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Abstract An extension of the primitive normal basis theorem and its strong version
is proved. Namely, we show that for nearly all A =

(
a b
c d

)
∈ GL2(Fq), there exists

some x ∈ Fqm such that both x and (−dx+b)/(cx−a) are simultaneously primitive
elements of Fqm and produce a normal basis of Fqm over Fq, granted that q and m are
large enough.
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1 Introduction

Let q be a power of some prime number p. We denote by Fq the finite field of q
elements, by Fqm its extension of degree m and by F̄q its algebraic closure. A gen-
erator of the multiplicative group F∗qm is called primitive and an element x ∈ Fqm is

called free over Fq if the set {x,xq,xq2
, . . . ,xqm−1} is an Fq-basis of Fqm . Such a basis

is called normal.
Hensel [15], in 1888, proved the existence of normal basis for arbitrary finite

field extensions and observed their computational advantages for finite field arith-
metic. Naturally, a number of software and hardware implementations, used mostly
in coding theory and cryptography, make use of normal basis. For further information
on normal basis and some of their applications, we refer to [12] and the references
therein. Also, the existence of primitive elements for all finite fields is well-known.
Besides their theoretical interest, primitive elements of finite fields are widely used
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in various applications, including cryptographic schemes, such as the Diffie-Hellman
key exchange [11], and the construction of Costas arrays [14], used in sonar and radar
technology. A natural step is to wonder whether there exists an element combining
those two properties for arbitrary finite field extension. The following result answers
that question.

Theorem 1.1 (Primitive Normal Basis Theorem) Let q be a prime power and m a
positive integer. There exists some x ∈ Fqm that is simultaneously primitive and free
over Fq.

Lenstra and Schoof [20] were the first to provide a complete proof of the above,
completing partial proofs of Carlitz [1,2] and Davenport [10]. Recently, Cohen and
Huczynska [8] provided a computer-free proof, with the help of sieving techniques,
previously introduced by Cohen [5]. Also, several generalizations of Theorem 1.1
have been investigated [7,16,18,27]. More recently, a stronger result was proved.

Theorem 1.2 (Strong Primitive Normal Basis Theorem) Let q be a prime power
and m a positive integer. There exists some x ∈ Fqm such that x and x−1 are both
simultaneously primitive and free over Fq, unless the pair (q,m) is one of (2,3),
(2,4), (3,4), (4,3) or (5,4).

Tian and Qi [26] were the first to prove this result for m≥ 32, but Cohen and Huczyn-
ska [9] were those who extended it to its stated form, once again with the help of
their sieving techniques. The reader is referred to [6,17] and the references therein,
for complete surveys of this, very active, line of research.

We consider an action of GL2(Fq), the group of 2× 2 invertible matrices over
Fq, on irreducible polynomials over Fq of degree at least 2. More specifically, set
In := {F ∈ Fq[X ] : F irreducible of degree n} and let A =

(
a b
c d

)
∈ GL2(Fq) and

F ∈ In, n≥ 2. We define

FA(X) := (cX +d)nF
(

aX +b
cX +d

)
.

It is not hard to see [13,25] that the above rule defines an action of GL2(Fq) on In,
n≥ 2 and that x ∈ F̄q is a root of F if and only if (−dx+b)/(cx−a) is a root of FA.
The problem of the enumeration of the fixed points of this action has recently gained
attention [13,25].

In this work we are interested in whether there exists an irreducible F ∈ Fq[X ], of
degree m such that all its roots and all the roots of FA are simultaneously primitive
and free over Fq. Clearly, x ∈ Fqm is primitive or free over Fq if and only if all the
other roots of its irreducible polynomial over Fq are also primitive or free over Fq,
thus the problem can be restated as follows.

Problem 1.3 Let q be a prime power, m a positive integer and A =
(

a b
c d

)
∈GL2(Fq).

Does there exists some x ∈ Fqm such that both x and (−dx+b)/(cx−a) are simulta-
neously primitive and free over Fq?

Clearly, Theorems 1.1 and 1.2 solve the above problem completely for some special
matrices, namely for matrices of the form

(
a 0
0 a

)
and

(
0 a
a 0

)
respectively. In this paper,
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we prove that the above problem can be solved for most A ∈ GL2(Fq), if q ≥ 23
and m ≥ 17 (Theorem 6.9), providing an extension to these powerful and important
theorems.

This work is influenced by the work of Lenstra and Schoof [20], while a character
sum estimate [3,4,22] plays a crucial role in our proof. Moreover, much of this paper
is inspired by the work of Cohen and Huczynska [8,9], whose sieving techniques have
been adjusted and partially implemented. All non-trivial calculations were performed
with MAPLE (v. 13). Finally, we note that, in several cases, simplicity and elegance
were favored over optimality.

More specifically, in Section 2 we express the characteristic functions of the prop-
erties, we are interested in, with the help of characters. The aim of this is to use the
character sums estimates, presented in Section 3, to obtain a sufficient condition for
the existence of elements with the desired properties in Section 4. In Section 5, we
implement the sieving techniques mentioned earlier, in order to further relax the con-
dition of Section 4, while in Section 6 we prove the validity of the conditions of
previous sections, hence the existence of elements with the desired properties.

2 Primitive and free elements

In this section, we present the concepts of G-free and d-free elements, where G is
a polynomial and d a number. These concepts generalize the concepts of free and
primitive elements respectively. Additionally, we give the definition of a character of
an arbitrary group and give some basic properties of the characters of the additive and
multiplicative groups of a finite field. Finally, we give the characteristic function of
the properties we are interested in, in terms of characters.

Let x ∈ F̄q and F = ∑
n
i=0 fiX i ∈ Fq[X ]. We define F ◦ x := ∑

n
i=0 fixqi

. It is clear
that, under the above action, the additive group F̄q is an Fq[X ]-module, therefore
the annihilator of an element x ∈ F̄q is an ideal of Fq[X ] and, as such, has a unique
monic generator, called Order of x and denoted by Ord(x). In particular, we see that
x ∈ Fqm ⇐⇒ (Xm−1)◦ x = 0, that is x ∈ Fqm ⇐⇒ Ord(x) | Xm−1. In particular,
it is clear that the elements of Fqm that are free over Fq are exactly those of Order
Xm−1.

Furthermore, if x∈Fqm is of Order G, then there exists some y∈Fqm such that H ◦
y = x, where H(X) := (Xm−1)/G(X), while elements of Fqm which can be written
in that manner are exactly those whose Order divides G. The above argument enables
us to extend the definition of a free element. Suppose G | Xm− 1. We call x ∈ Fqm

G-free over Fq if x = H ◦ y for some y ∈ Fqm and some H | G implies H = 1.
Similarly, x ∈ F∗qm is primitive if ord(x) = qm− 1, where ord(x) stands for the

multiplicative order of x. This means that x is primitive if and only if x = yd , for some
y ∈ Fqm and d | qm− 1, implies d = 1. Let d | qm− 1, we call x ∈ F∗qm d-free if and
only if, for w | d, x = yw implies w = 1. Furthermore, it follows from the definitions
that qm− 1 may be freely replaced by its radical q0 and Xm− 1 may be replaced by
its radical, F0 := Xm0 −1, where m0 such that m = m0 pb and gcd(m0, p) = 1.
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In the rest of this section we present a couple of functions that characterize prim-
itive and free elements. The concept of a character of a finite abelian group is neces-
sary.

Definition 2.1 Let G be a finite abelian group. A character of G is a group homo-
morphism G→ C∗, where C∗ stands for the multiplicative group of C. It is well
known that the characters of G form a group under multiplication, which is isomor-
phic to G. This group is called the dual of G and denoted by Ĝ. Furthermore, the
character χo : G→ C∗, where χo(g) = 1 for all g ∈G, is called the trivial character
of G. Finally, by χ̄ we denote the inverse of χ .

From now on, we will call the characters of the multiplicative group F∗qm multiplica-
tive characters and the characters of the additive group Fqm additive characters. Fur-
thermore, we will denote by χo and ψo the trivial multiplicative and additive character
respectively and we will extend the multiplicative characters to zero with the rule

χ(0) :=

{
0, if χ ∈ F̂∗qm \{χo},
1, if χ = χo.

A special multiplicative character is the quadratic character, which is defined for odd
q and we denote by τ . Namely we have that

τ(x) :=

{
1, if x is a square in F∗qm ,

−1, otherwise,

and it is clear that τ is the only multiplicative character of order 2.
Before we continue further, we indicate some more well-known facts about ad-

ditive and multiplicative characters. As mentioned before, F̂∗qm ∼= F∗qm , hence F̂∗qm is
cyclic of order qm−1, thus for every d | qm−1,

∑
χ∈F̂∗qm , ord(χ)=d

1 = φ(d), (1)

where φ stands for the Euler function. Furthermore, we denote by χg a generator
of F̂∗qm and it follows that any non-trivial multiplicative character can be written as
χn

g for some n ∈ {1, . . . ,qm− 2}. Similarly, every additive character is of the form
ψ(x) = exp((2πiTr(yx))/p), where Tr stands for the trace function of Fqm over Fp
and y ∈ Fqm . Conversely, every function of that form is an additive character. It is
clear that ψo, the trivial character, corresponds to y = 0, while we denote by ψg the
character that corresponds to y = 1. For the above well-known facts the reader is
referred to classic textbooks [21,24].

Let r | qm−1. Following Cohen and Huczynska [8,9], we define the characteristic
function of the r-free elements of Fqm as follows:

ωr : Fqm → C,

x 7→ θ(r)∑
d|r

µ(d)
φ(d) ∑

χ∈F̂∗qm ,ord(χ)=d

χ(x),
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where µ denotes the Möbius function and θ(r) := φ(r)/r = ∏l|r,l prime(1− l−1)

In order to define the additive analogue of ωr, the analogues of θ , φ , µ and the
order of a character have to be defined. First observe that, F̂qm is an Fq[X ]-module
under the rule ψF(x) = ψ(F ◦ x), for ψ ∈ F̂qm , F ∈ Fq[X ] and x ∈ Fqm . The Or-
der of ψ ∈ F̂qm is defined as the monic polynomial generating the annihilator of ψ

in Fq[X ] and denoted by Ord(ψ). Let F ∈ Fq[X ] be a non-zero polynomial, then
φ(F) := |(Fq[X ]/FFq[X ])∗|, the analogue of the Euler function. The analogue of
Eq. (1), shown in [20], states that for G ∈ Fq[X ], with G | Xm−1 we have that

∑
ψ∈F̂qm , Ord(ψ)=G

1 = φ(G). (2)

More interesting similarities between the two versions of φ can be shown [23, Ch. 1
and 2]. The definition of the analogues θ and the Möbius function are straightforward,
namely for F ∈ Fq[X ] define θ(F) := φ(F)/qdeg(F) and

µ(F) :=

{
(−1)r, if F is divisible by r distinct monic irreducibles,
0, otherwise.

We are now in position to define the analogue of ωr, namely for F | Xm−1, we define

ΩF : Fqm → C,

x 7→ θ(F) ∑
G|F,G monic

µ(G)

φ(G) ∑
ψ∈F̂qm ,Ord(ψ)=G

ψ(x).

It can be shown [8,9] that ΩF is the characteristic function for the elements of Fqm

that are F-free over Fq.

3 Character sums

The characteristic functions from the previous section involve characters, leading to
consider character sums and a computation, or at least an estimation, of those will
be necessary. The following results are well-known, while proofs for the first three
results can be found in classic textbooks [21,24].

Lemma 3.1 (Orthogonality relations) Let χ be a non-trivial character of a group
G and g a non-trivial element of G. Then

∑
x∈G

χ(x) = 0 and ∑
χ∈Ĝ

χ(g) = 0.

Remark 3.2 Lemma 3.1 holds for arbitrary group G, i.e. it can be applied to both
additive and multiplicative characters.
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Lemma 3.3 (Kloosterman sums) Let χ be a multiplicative character (may be trivial
or non-trivial) and ψ a non trivial additive character. If y1,y2 ∈Fqm are not both zero,
then ∣∣∣∣∣∣ ∑

x∈F∗qm

χ(x)ψ(y1x+ y2x−1)

∣∣∣∣∣∣≤ 2qm/2.

Theorem 3.4 Let χ be a non-trivial multiplicative character of order n, and F ∈
Fqm [X ] such that F 6= yHqm−1, for any y ∈ Fqm and H ∈ Fqm [X ]. If F has l distinct
roots, then ∣∣∣∣∣∣ ∑

x∈Fqm

χ(F(x))

∣∣∣∣∣∣≤ (l−1)qm/2.

The following theorem plays a crucial role in our proof.

Theorem 3.5 Let χ be a non-trivial multiplicative character of order n and ψ be
a non-trivial additive character. Let F ,G be rational functions in Fqm(X) such that
F 6= yH n, for any y∈Fqm and H ∈Fqm(X), and G 6=H p−H +y, for any y∈Fqm

and H ∈ Fqm(X). Then∣∣∣∣∣∣ ∑
x∈Fqm\S

χ(F (x))ψ(G (x))

∣∣∣∣∣∣≤ (deg(G )∞ + l + l′− l′′−2)qm/2,

where S is the set of poles of F and G , (G )∞ is the pole divisor of G , l is the number
of distinct zeros and finite poles of F in F̄q, l′ is the number of distinct poles of G
(including ∞) and l′′ is the number of finite poles of F that are poles or zeros of G .

A slightly weaker (lacking the term l′′) version of the above theorem was initially
proved by Perel’muter [22], but Castro and Moreno [3] improved the result to its
stated form. Recently, Cochraine and Pinner [4] presented a proof, which involves the
elementary Stepanov-Schmidt method instead of concepts from algebraic geometry.

4 Some estimates

The purpose of this section is to prove Proposition 4.3, which provides us with a
condition for the existence of elements with the desired properties. Towards that, we
express the number of elements with the desired properties with the help of the func-
tions presented earlier, leading us to character sums. After that, utilizing the results of
the previous section, we prove Proposition 4.3. Also, note that due to the complexity
of the character sums it is necessary to distinguish four cases depending on the form
of A, A is neither upper triangular nor anti-diagonal, A is upper triangular, but not
diagonal, A is anti-diagonal and A is diagonal, resulting four subsections.

Let A =
(

a b
c d

)
∈ GL2(Fq), qi | q0 and Fi | F0, for i = 1,2, where q0 and F0 stand

for the radicals of qm− 1 and Xm− 1 respectively; in particular F0 = Xm0 − 1. We
denote by k the quadruple (q1,q2,F1,F2) and call it a divisor quadruple. Furthermore,
we call an element x ∈ Fqm kA-free over Fq, if x is q1-free and F1-free over Fq and
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(−dx + b)/(cx− a) is q2-free and F2-free over Fq. Also we denote by NA(k) the
number of x ∈ Fqm that are kA-free over Fq. We write l | k, if l = (d1,d2,G1,G2) and
di | qi and Gi | Fi for i = 1,2. Further, w stands for (q0,q0,F0,F0) and 1 stands for
(1,1,1,1), while the greatest common divisor and the least common multiple of a set
of divisor quadruples are defined point-wise. A divisor quadruple p is called prime
if it has exactly one entry that is 6= 1 and this entry is either a prime number or an
irreducible polynomial. Finally, if two or more divisor quadruples are co-prime, i.e.
their greatest common divisor is 1, then their product can be defined naturally.

Example 4.1 If q = 5 and m = 4, then q0 = 78 (since qm−1 = 624 = 24 ·3 ·13 and
2 ·3 ·13 = 78) and F0 = X4−1 = (X −1)(X −2)(X −3)(X −4) ∈ F5[X ], since m =
m0 = 4. In that case, four distinct divisor quadruples would be e0 := (2,6,X2−1,1),
p1 := (1,1,1,X − 1), p2 := (3,1,1,1) and p3 := (1,1,1,X + 1). It is clear that e0,
p1, p2 and p3 are non-trivial, co-prime divisor quadruples, while e0 is non-prime
and p1, p2 and p3 are primes. Also, since they are co-prime, we can define e :=
e0 ·p1 ·p2 ·p3 = (6,6,X2−1,X2−1).

It is clear that for our purposes it suffices to show that NA(w) > 0. In the next sub-
sections we are going to express NA(k) in terms of character sums and export some
useful expressions. From the fact that ω and Ω are characteristic functions we have
that:

NA(k) = ∑
x

ωq1(x)ΩF1(x)ωq2

(
−dx+b
cx−a

)
ΩF2

(
−dx+b
cx−a

)
, (3)

where the sum runs over Fqm , except a/c if c 6= 0.
For r ∈ N, set tr to be the number of prime divisors of r and tF the number of

monic irreducible divisors of F ∈ Fq[X ]. It is clear that

∑
d|r
|µ(d)|= 2tr and ∑

G|F
|µ(G)|= 2tF .

Additionally, set W (r) := 2tr , W (F) := 2tF . The lemma below provides us with an
estimate for W (r), where r ∈ N. The proof, similar to [9, Lemma 3.7], is immediate
using multiplicativity.

Lemma 4.2 For any r,α ∈ N, W (r) ≤ cα,rr1/α , where cr,α = 2s/(p1 · · · ps)
1/α and

p1, . . . , ps are the primes ≤ 2α that divide r. In particular, we are interested in cr :=
cr,8 and dr := cr,12. Furthermore, for all r ∈ N, cr < 4514.7 and dr < 1.06 ·1024.

Let k = (q1,q2,F1,F2) be a divisor quadruple, from now on we will denote by f (k)
the product f (q1) f (q2) f (F1) f (F2), where f may be θ , φ , µ or W . The purpose of
the rest of this section is to prove the following.

Proposition 4.3 Let A =
(

a b
c d

)
∈ GL2(Fq) and k be a divisor quadruple. If qm/2 >

4W (k), then NA(k) is positive, provided that q 6= 2 and if A has exactly two non-zero
entries and γ is their quotient, then τ(γ) = 1, where τ is the quadratic character.

In the following subsections we will prove the above proposition for all possible
forms of A.

Remark 4.4 In the following subsections it will become clear why the restriction
q 6= 2 as well as the restriction regarding the entries are indeed necessary.
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4.1 Matrices that are neither upper triangular nor anti-diagonal

In this subsection we assume that A =
(

a b
c d

)
∈GL2(Fq), where c 6= 0 and at most one

of the other entries is zero. A more convenient expression of NA(k) is desirable, i.e.
Eq. (3) can be rewritten as:

NA(k) = θ(k) ∑
x 6=a/c

∑
d1|q1

µ(d1)

φ(d1)
∑

ord(χ1)=d1

χ1(x) ∑
G1|F1

µ(G1)

φ(G1)
∑

Ord(ψ1)=G1

ψ1(x)

∑
d2|q2

µ(d2)

φ(d2)
∑

ord(χ2)=d2

χ2

(
−dx+b
cx−a

)
∑

G2|F2

µ(G2)

φ(G2)
∑

Ord(ψ2)=G2

ψ2

(
−dx+b
cx−a

)

⇒ NA(k) = θ(k)∑
l|k

µ(l)
φ(l) ∑

χi,ψi

XA(χ1,χ2,ψ1,ψ2), (4)

where

XA(χ1,χ2,ψ1,ψ2) := ∑
x 6=a/c

χ1(x)χ2

(
−dx+b
cx−a

)
ψ1(x)ψ2

(
−dx+b
cx−a

)
.

Proposition 4.5 Let χ1,χ2 be multiplicative characters and ψ1,ψ2 be additive char-
acters such that (χ1,χ2,ψ1,ψ2) 6= (χo,χo,ψo,ψo), then

|XA(χ1,χ2,ψ1,ψ2)| ≤ 4qm/2.

Proof There exist some ni ∈ {0,1, . . . ,qm− 2} such that χi(x) = χg(xni) and some
yi ∈ Fqm such that ψi(x) = ψg(yix), for i = 1,2. It follows that

XA(χ1,χ2,ψ1,ψ2) = ∑
x 6=a/c

χg(F (x))ψg(G (x)), (5)

where F (X) := (Xn1(−dX +b)n2)/(cX−a)n2 ∈Fq(X) and G (X) := (y1X(cX−a)+
y2(−dX + b))/(cX − a) ∈ Fq(X). We prove the desired result for all possible forms
of F and G .

From Eq. (5), Theorem 3.5 implies that if F 6= yH qm−1, for any y ∈ Fqm and
H ∈ Fqm(X), and G 6= H p−H + y, for any y ∈ Fqm and H ∈ Fqm(X), then

|XA(χ1,χ2,ψ1,ψ2)| ≤ 4qm/2.

Assume F = yH qm−1 for some y ∈ Fqm and H ∈ Fqm(X). In that case n1 =
n2 = 0. To see this, write H = H1/H2, where H1,H2 are co-prime polynomials over
Fqm . It follows that

Xn1(−dX +b)n2Hqm−1
2 = y(cX−a)n2Hqm−1

1 .

Since H1 and H2 are co-prime, the above equation implies Hqm−1
2 | (cX − a)n2 , that

is H2 is constant, since n2 < qm− 1. By considering degrees, we conclude that H1
is also constant and that n1 = 0. It follows that (−dX + b)n2 = y′(cX − a)n2 , where
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y′ := yHqm−1
1 H1−qm

2 ∈ Fqm , impossible for A ∈GL2(Fq), unless n2 = 0. Additionally,
if y1 = 0 and y2 6= 0, then, from Eq. (5), we have that

|XA(χ1,χ2,ψ1,ψ2)|=

∣∣∣∣∣∣∑x 6= a
c

ψ

(
y2(−dx+b)

cx−a

)∣∣∣∣∣∣=
∣∣∣∣∣∑y6=0

ψ

(
y2(bc−da)

y
− y2d

c

)∣∣∣∣∣
=

∣∣∣∣∣ψ(−y2d/c) ∑
y6=0

ψ(y)

∣∣∣∣∣=
∣∣∣∣∣∣−1+ ∑

y∈Fqm

ψ(y)

∣∣∣∣∣∣= 1,

according to Lemma 3.1. Similarly, if y1 6= 0 and y2 = 0, then

|XA(χ1,χ2,ψ1,ψ2)|=

∣∣∣∣∣ ∑
x 6=a/c

ψg(y1x)

∣∣∣∣∣=
∣∣∣∣∣∣−ψg(y1a/c)+ ∑

x∈Fqm

ψ1(x)

∣∣∣∣∣∣
= |−ψg(y1a/c)|= 1.

Finally, if y1,y2 6= 0, then Eq. (5) yields

|XA(χ1,χ2,ψ1,ψ2)|=

∣∣∣∣∣ ∑
x 6=a/c

ψg((y1x(cx−a)+ y2(−dx+b))/(cx−a))

∣∣∣∣∣
=

∣∣∣∣∣∑y 6=0
ψg(yy1/c+ y−1y2(−da+bc)/c+(y1a− y2d)/c)

∣∣∣∣∣
=

∣∣∣∣∣ψg(z0) ∑
y6=0

ψg(z1y+ z2y−1)

∣∣∣∣∣=
∣∣∣∣∣∑y6=0

ψg(z1y+ z2y−1)

∣∣∣∣∣ ,
where z0 := (y1a−y2d)/c, z1 := y1/c and z2 := y2(−da+bc)/c. It follows that, since
both z1 and z2 are non-zero, the last sum is bounded by 2qm/2, from Lemma 3.3.

Assume G = H p−H + y for some y ∈ Fqm and H ∈ Fqm(X). Write H =
H1/H2, where H1,H2 are co-prime polynomials over Fqm . If G 6= 0, then

G = H p−H + y⇒ y1X(cX−a)+ y2(−dX +b)
cX−a

=
H p

1 −H1H p−1
2 + yH p

2
H p

2
.

It follows immediately from the restrictions on A that cX−a is co-prime to y1X(cX−
a)+ y2(−dX +b) and it is clear that H p

2 is co-prime to H p
1 −H1H p−1

2 + yH p
2 , hence

cX − a = H p
2 , a contradiction since c 6= 0. It follows that G = 0, that is y1 = y2 =

0. Additionally, if at least one of n1,n2 is non-zero it follows that the polynomial
Xn1(−dX + b)n2(cX − a)qm−1−n2 has at most three distinct roots and is not of the
form yHqm−1, for y ∈ Fqm , H ∈ Fqm [X ]. Now, from Eq. (5), we have

XA(χ1,χ2,ψ1,ψ2) = ∑
x 6=a/c

χg(xn1(−dx+b)n2(cx−a)−n2)

= ∑
x∈Fqm

χg(xn1(−dx+b)n2(cx−a)qm−1−n2),

but the last sum is bounded by 2qm/2, from Theorem 3.4. ut
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Proposition 4.5 and Eq. (4) imply

NA(k)≥ θ(k)

(
qm−1−4qm/2

∑
l|k,l 6=1

µ(l)
φ(l) ∑

χ1,χ2,ψ1,ψ2

1

)
.

The above, combined with Eqs. (1) and (2), is rewritten as

NA(k)≥ θ(k)qm/2

(
qm/2− 1

qm/2 −4 ∑
l|k,l 6=1

µ(l)

)
⇒ NA(k)≥ θ(k)qm/2(qm/2−q−m/2−4(2tq1+tq2+tF1+tF2 −1)).

Summing up, we have proved the following, which clearly implies Proposition 4.3,
provided A is of the described form.

Proposition 4.6 Let A =
(

a b
c d

)
∈GL2(Fq), where c 6= 0 and at most one of the other

entries is zero. Let k be a divisor quadruple. If qm/2 > 4W (k)− 7
2 , then NA(k) is

positive.

4.2 Upper triangular matrices that are not diagonal

In this section we focus on matrices of the form A =
(

a b
0 d

)
∈ GL2(Fq), with b 6= 0.

Before proceeding, we have to study a bit more the behavior of the Order of an
additive character.

Lemma 4.7 Let ψ ∈ F̂qm be an additive character, then ψ|Fq is trivial if and only if
Ord(ψ) | Xm−1 +Xm−2 + · · ·+1.

Proof Assume ψ(α) = 1 for all α ∈ Fq. Let x ∈ Fqm . We have that

ψ
Xm−1+···+1(x) = ψ(xqm−1

+ xqm−2
+ · · ·+ x) = ψ(TrFqm/Fq(x)) = 1,

since TrFqm/Fq(x) ∈ Fq. It follows that Xm−1 + · · ·+ 1 lies in the annihilator of ψ ,
hence divided by Ord(ψ).

Conversely, assume that Ord(ψ) | Xm−1 + · · ·+ 1. Let α ∈ Fq. Since TrFqm/Fq :
Fqm→ Fq is onto, there exist some x∈ Fqm such that TrFqm/Fq(x) =α . Since Ord(ψ) |
Xm−1 + · · ·+1, it follows that Xm−1 + · · ·+1 lies in the annihilator of ψ , thus

ψ
Xm−1+···+1(x) = 1 ⇒ ψ(TrFqm/Fq(x)) = 1 ⇒ ψ(α) = 1. ut

Lemma 4.8 If gcd(p,m) = 1, then {ψ|Fq : ψ ∈ F̂qm ,Ord(ψ) | X−1}= F̂q.

Proof From Eq. (2), it is clear that there are exactly q additive characters, whose
Order divides X − 1. Therefore, since F̂q also has q elements, it suffices to show
that for any two distinct additive characters, whose Order divides X − 1, their re-
strictions on Fq differ. Let ψ1,ψ2 be additive characters whose Order divides X − 1
such that ψ1|Fq = ψ2|Fq . It follows that ψ1ψ̄2 is trivial on Fq and Lemma 4.7 yields
Ord(ψ1ψ̄2) | Xm−1 + · · ·+1. It is clear though that Ord(ψ1ψ̄2) | X −1 and it follows
that Ord(ψ1ψ̄2) = 1, i.e. ψ1 = ψ2. ut
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Lemma 4.9 Let G1,G2 ∈ Fq[X ] such that G1G2 | Xm− 1 and gcd(G1,G2) = 1. If
Gi := {ψ ∈ F̂qm : Ord(ψ) = Gi} (i = 1,2) and G := {ψ ∈ F̂qm : Ord(ψ) = G1G2},
then G1G2 =G.

Proof It is clear that |G1G2| = |G|, thus it suffices to show that G1G2 ⊆ G. Let
ψ1 ∈ G1 and ψ2 ∈ G2. Set F = Ord(ψ1ψ2). It is clear that (ψ1ψ2)

G1G2 = ψo, thus
F | G1G2. It is also clear that (ψ1ψ2)

F = ψo, that is ψF
1 = ψ̄F

2 . Since Ord(ψF
1 ) | G1

and Ord(ψ̄F
2 ) | G2, it follows that ψF

1 = ψF
2 = ψo, consequently G1 | F and G2 | F ,

i.e. G1G2 | F . ut

As in Subsection 4.1, we have

NA(k) = θ(k)∑
l|k

µ(l)
φ(l) ∑

χi,ψi

ψ2(b/a)YA(χ1,χ2,ψ1,ψ2), (6)

where

YA(χ1,χ2,ψ1,ψ2) := ∑
x∈Fqm

χ1(x)χ2

(
−dx+b

a

)
(ψ1ψ

′
2)(x)

= ∑
x∈Fqm

χ

(
xn1

(
−dx+b

a

)n2
)
(ψ1ψ

′
2)(x),

where ψ ′2(x) := ψ2(−dx/a) for x ∈ Fqm , an additive character with the same Order
as ψ2 and ψ1ψ ′2 is the product of ψ1 and ψ ′2, i.e. another additive character. If all
χ1,χ2,ψ1ψ ′2 are non-trivial, then |YA(χ1,χ2,ψ1,ψ2)| ≤ 2qm/2, from Theorem 3.5.
If exactly two of χ1,χ2,(ψ1ψ ′2) are non-trivial, then Theorems 3.4 and 3.5 imply
|YA(χ1,χ2,ψ1,ψ2)| ≤ qm/2. If exactly one of χ1,χ2,ψ1ψ ′2 is non-trivial, Lemma 3.1
implies YA(χ1,χ2,ψ1,ψ2) = 0. Now, as in section 4.1, we get∣∣∣∣∣NA(k)

θ(k)
−qm

∑
G|gcd(F1,F2)

µ(G)2

φ(G)2 ∑
Ord(ψ2)=G

ψ2

(
b
a

)∣∣∣∣∣≤ 2qm/2(W (k)−4). (7)

Eq. (7) suggests that a lower bound for the coefficient of qm is desirable. Set
F3 := gcd(F1,F2)/(X − 1), if X − 1 | gcd(F1,F2) and F3 := gcd(F1,F2) otherwise.
Further, set γ := b/a 6= 0. It follows immediately from Lemma 4.7 that ψ(γ) = 1 for
any additive character ψ whose Order divides F3. First, suppose X −1 | gcd(F1,F2).
With the help of Lemmata 3.1, 4.8 and 4.9, we evaluate:

∑
G|gcd(F1,F2)

µ2(G)

φ 2(G) ∑
Ord(ψ)=G

ψ(γ)

= ∑
G|F3

1
φ 2(G) ∑

Ord(ψ)=G
ψ(γ)+ ∑

G|F3

1
φ 2((X−1)G) ∑

Ord(ψ)=(X−1)G
ψ(γ)

= ∑
G|F3

1
φ(G)

+ ∑
G|F3

1
φ 2((X−1)G)

(
∑

Ord(ψ1)=G
ψ1(γ)

)(
∑

Ord(ψ2)=X−1
ψ2(γ)

)

=

(
1− 1

φ(X−1)2

)
∑

G|F3

1
φ(G)

=
q(q−2)
(q−1)2 ∑

G|F3

1
φ(G)

≥ q(q−2)
(q−1)2 .
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Similarly, if X−1 - gcd(F1,F2), then

∑
G|gcd(F1,F2)

µ2(G)

φ 2(G) ∑
Ord(ψ)=G

ψ(γ) = ∑
G|F3

1
φ(G)

≥ 1.

Summing up, Eqs. (6) and (7) give

NA(k)≥ θ(k)qm/2
(

qm/2 q(q−2)
(q−1)2 +4−2W (k)

)
,

which implies the following.

Proposition 4.10 Let A =
(

a b
0 d

)
∈GL2(Fq), where b 6= 0 and k be a divisor quadru-

ple. If

qm/2 q(q−2)
(q−1)2 > 2W (k)−4,

then NA(k) is positive.

Remark 4.11 If q = 2, then the left part of the latter is zero and the inequality holds
only for k = 1. This is not a surprise, since one easily checks that in this case A =(

1 1
0 1

)
and, therefore, problem 1.3 holds if there exists some x ∈ F2m such that x and

x+ 1 are both free over F2, impossible from the definition of free elements for m
odd. On the other hand, Proposition 4.3 is clearly implied, provided that A is of the
described form.

4.3 Anti-diagonal matrices

In this subsection we assume that A=
(

0 b
c 0

)
∈GL2(Fq), γ := b/c and τ(γ) = 1, where

τ is the quadratic character. The following lemma will prove to be useful.

Lemma 4.12 Let α,β be integers such that β/α is an odd integer and β is square-
free. Then

β

φ(β ) ∏
p| β

α

p prime

p−2
p−1

>
1
2
.

Proof Write β/α = p1 · · · pk, where pi are primes such that pi < p j, for i< j. Clearly,
our statement is true for k ∈ {0,1}. Suppose k ≥ 2, then it follows that

B :=
β

φ(β ) ∏
p| β

α

p prime

p−2
p−1

=
p1−2
p1−1

· β

φ(β )

k

∏
i=2

pi−2
pi−1

.

Since the function f (x) = (x−2)/(x−1) is increasing for x > 1, we deduce

B≥ p1−2
p1−1

· β

φ(β )

k−1

∏
i=1

pi−1
pi

=
p1−2
p1−1

· β

φ(β )
· φ(β/pkα)

β/pkα
=

p1−2
p1−1

· α pk

φ(α pk)
.

The result follows, since p1 ≥ 3. ut
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As in Subsection 4.1, we conclude

NA(k) = θ(k)∑
l|k

µ(l)
φ(l) ∑

χi,ψi

χ2(γ)ZA(χ1,χ2,ψ1,ψ2), (8)

where
ZA(χ1,χ2,ψ1,ψ2) := ∑

x 6=0
(χ1χ̄2)(x)ψ1(x)ψ2(γx−1).

If at least two of ψ1, ψ2 and χ1χ̄2 (where χ1χ̄2 is the product of χ1 and χ̄2, an-
other multiplicative character), are non-trivial, then |ZA(χ1,χ2,ψ1,ψ2)| is bounded
by 2qm/2, from Lemma 3.3. If exactly one of ψ1, ψ2 and χ1χ̄2 is non-trivial, then
|ZA(χ1,χ2,ψ1,ψ2)|= 0, from Lemma 3.1. We eventually get∣∣∣∣∣NA(k)

θ(k)
− (qm−1) ∑

d|gcd(q1,q2)

µ2(d)
φ 2(d) ∑

ord(χ2)=d
χ2(γ)

∣∣∣∣∣≤ 2qm/2(W (k)−4). (9)

Eq. (9) implies that a lower bound for the coefficient of qm is desirable. Set q3 :=
gcd(q1,q2). Furthermore, we observe that the function

f (x) = ∑
d|x

µ2(d)
φ 2(d) ∑

ord(χ)=d
χ(γ)

is multiplicative. Consequently, if we write q3 = pn1
1 · · · p

nl
l , where the pi’s are distinct

primes, then the coefficient of qm in Eq. (9) can be rewritten as

l

∏
i=1

∑
d|pni

i

µ2(d)
φ 2(d) ∑

ord(χ)=d
χ(γ) = ∏

p|q3
p prime

(
1+

1
(p−1)2 ∑

ord(χ)=p
χ(γ)

)
.

It is clear that if a prime p divides q3, then ∑ord(χ)=p χ(γ) is p− 1, if χ(γ) = 1 for
all multiplicative characters χ of order p, and −1 if there exists some multiplicatice
character χ of order p such that χ(γ) 6= 1. Furthermore, set

q4 := ∏
p prime,p|q3

χ(γ)=1 if ord(χ)=p

p.

With the help of these observations, the coefficient of qm in Eq. (9) can be rewritten
as

∏
p prime,p|q4

(
1+

1
p−1

)
∏

p prime,p|q3,p-q4

(
1− 1

(p−1)2

)
= ∏

p|q3,p prime

p
p−1 ∏

p prime,p|q3,p-q4

p−2
p−1

=
q∗3

φ(q∗3)
∏

p|
q∗3
q4

,p prime

p−2
p−1

,

where q∗3 is the radical of q3. Here we note that q∗3/q4 is always odd. This is immediate
if q∗3 is odd, i.e. q is even. If q∗3 is even, i.e. q is odd, then q4 is also even since χ(γ)= 1,
when χ has order 2, i.e. χ = τ .
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It follows immediately from Lemma 4.12 that the last expression of the coefficient
of qm in Eq. (9) is larger than 1/2. Now, Eqs. (8) and (9) give:

NA(k)> θ(k)qm/2

(
qm/2

2
− 1

2qm/2 +8−2W (k)

)
,

which implies the following.

Proposition 4.13 Let A =
(

0 b
c 0

)
∈ GL2(Fq), where τ(b/c) = 1, where τ is the qua-

dratic character, and k be a divisor quadruple. If qm/2 ≥ 4W (k)−15, then NA(k) is
positive.

Remark 4.14 The restriction for τ(b/c) = 1 may look unnecessary, but is not. For
instance, if x ∈ Fqm is primitive and γ ∈ Fqm is not a square, i.e. τ(γ) =−1, then one
easily checks that (γx)(q

m−1)/2 = 1, i.e. γx is not primitive. Additionally, it is clear that
Proposition 4.13 implies Proposition 4.3, provided that A is of the described form.

4.4 Diagonal matrices

In this subsection we prove Proposition 4.3, when A is diagonal. Suppose A=
(

a 0
0 d

)
∈

GL2(Fq), γ := d/a and τ(γ) = 1, where τ is the quadratic character; Eq. (3) becomes:

NA(k) = ∑
x∈Fqm

ωq1(x)ΩF1(x)ωq2(γx)ΩF2(γx).

It is clear from the definition of an F2-free element, that since γ ∈ F∗q, x is F2-free if
and only if γx is F2-free, i.e. ΩF2(γx) = ΩF2(x). Furthermore, ΩF1(x)ΩF2(x) is 1, if x
is simultaneously F1-free and F2-free, and 0 otherwise, but x is simultaneously F1-free
and F2-free if and only if it is F3-free, where F3 := lcm(F1,F2), hence ΩF1(x)ΩF2(x)=
ΩF3(x). It follows that

NA(k) = ∑
x∈Fqm

ωq1(x)ωq2(γx)ΩF3(γx).

Now, as in Subsection 4.1, we get

NA(k) = θ(q1)θ(q2)θ(F3) ∑
d1,d2,G

µ(d1)µ(d2)µ(G)

φ(d1)φ(d2)φ(G) ∑
χi,ψ

χ2(γ)W (χ1,χ2,ψ),

where

W (χ1,χ2,ψ) := ∑
x∈Fqm

(χ1χ2)(x)ψ(x).

Lemma 3.1 implies that W (χ1,χ2,ψ) = 0, provided that exactly one of χ1χ2 or ψ is
non-trivial, where χ1χ2 is the product of χ1 and χ2, a multiplicative character. If both
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χ1χ2 and ψ are non-trivial, then Theorem 3.5 implies that |W (χ1,χ2,ψ)| ≤ qm/2.
Now, as in previous subsections, we get∣∣∣∣∣ NA(k)

θ(q1)θ(q2)θ(F3)
−qm

∑
d|gcd(q1,q2)

µ2(d)
φ 2(d) ∑

ord(χ2)=d
χ2(γ)

∣∣∣∣∣
≤ qm/2(W (q1)W (q2)W (F3)−3).

The coefficient of qm in the above equation was proved to be larger than 1/2 in
Subsection 4.3, hence we get

NA(k)> θ(q1)θ(q2)θ(F3)qm/2

(
qm/2

2
+6−W (q1)W (q2)W (F3)

)
,

which clearly implies the following.

Proposition 4.15 Let A =
(

a 0
0 d

)
∈ GL2(Fq), where τ(d/a) = 1, where τ is the qua-

dratic character, and k be a divisor quadruple. If qm/2 ≥ 2W (k)−12, then NA(k) is
positive.

Remark 4.16 Clearly, the bound of the above proposition is far from optimal, since
the much weaker condition qm/2 ≥ 2W (q1)W (q2)W (F3)−12 could be used instead.
Despite being non-optimal, Proposition 4.15 fits our purposes and is consistent with
the rest of this paper. Nonetheless, it is clear that if we restricted ourselves to diagonal
matrices, then we could get significantly better results. Moreover, one easily checks
that the comments of Remark 4.14 apply in this case as well.

5 The sieve

Following Cohen and Huczynska [8,9], we introduce a sieve that will help us relax
the condition proved in the previous section. The propositions included in this section
are those of Cohen and Huczynska [9], adjusted properly. Moreover, from now on we
assume that if A has exactly two non-zero entries and γ is their quotient, then τ(γ)= 1,
where τ stands for the quadratic character. In particular, A may have two, three or four
non-zero entries with the above further condition in the case it has exactly two non-
zero entries.

Let k = (q1,q2,F1,F2) be a divisor quadruple. A set of complementary divisor
quadruples of k, with common divisor k0 is a set {k1, . . . ,kr}, where the ki’s are
divisor quadruples such that ki | k for every i, their least common multiplier is divided
by the radical of k and (ki,k j)= k0 for every i 6= j. Furthermore, if k1, . . . ,kr are such
that ki = k0pi, where p1, . . . ,pr are distinct prime divisor quadruples, co-prime to k0,
then this particular set of complementary divisors is called a (k0,r)-decomposition
of k. For a (k0,r)-decomposition of k we define δ := 1−∑

r
i=1 1/|pi|, where |pi|

stands for the absolute value of the unique entry 6= 1 of pi, if this entry is a number,
and qdeg(F), if this entry is F ∈ Fq[X ]. Finally, we define ∆ := (r− 1)/δ + 2. The
following is a supplement to Example 4.1 and help us understand the new concepts
defined here.
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Example 5.1 Make all the assumptions of Example 4.1. Further, set e1 := (2,6,X2−
1,X−1), e2 := (6,6,X2−1,1) and e3 := (2,6,X2−1,X +1). Clearly, {e1,e2,e3} is a
set of complementary divisors of e with common divisor e0. In particular, observe that
p1, p2 and p3 are all co-prime to e0 and e0pi = ei for i ∈ {1,2,3}, hence {e1,e2,e3}
is also a (e0,3)-decomposition of e. For this decomposition, we compute δ = 1− 1

3−
1
5 −

1
5 = 4

15 and ∆ = 19/2

Proposition 5.2 (Sieving inequality) Let A ∈ GL2(Fq), k be a divisor quadruple
and {k1, . . . ,kr} be a set of complementary divisors of k with common divisor k0.
Then

NA(k)≥
r

∑
i=1

NA(ki)− (r−1)NA(k0).

Proof The result is trivial for r = 1. For r = 2, denote by S(k) the set of elements
that are kA-free over Fq, and with S(ki) the set of elements that are (ki)A-free over
Fq, where i = 0,1,2. Then S(k1)∪S(k2)⊆ S(k0) and S(k1)∩S(k2) = S(k). The de-
sired inequality follows after consideration of cardinalities. Suppose the result holds
for r = k ≥ 1. For r = k + 1, if we denote by k′ the least common multiplier of
k2, . . . ,kk+1, then it is clear that {k′,k1} is a set of complementary divisor quadru-
ples of k with common divisor k0. The desired result follows immediately from the
induction hypothesis. ut

Proposition 5.3 Let k be a divisor quadruple with a (k0,r)-decomposition, such that
δ > 0 and k0 = (q1,q1,F1,F1) for some q1 | q0 and F1 | F0. If A ∈ GL2(Fq), q > 2
and qm/2 > 4W (k0)∆ , then NA(k)> 0.

Proof Suppose p1, . . . ,pr are the primes of the (k0,r)-decomposition. Proposition 5.2
implies

NA(k)≥ δNA(k0)+
r

∑
i=1

(
NA(k0pi)−

(
1− 1
|pi|

)
NA(k0)

)
. (10)

Suppose A is of the form described in Subsection 4.1. In that case, taking into
account the analysis done in subsection 4.1, Eq. (10) implies

NA(k)≥ δθ(k0)

qm−1+∑
l|k0
l6=1

U(l)

+θ(k0)
r

∑
i=1

(
1− 1
|pi|

)
∑

l|k0pi
l-k0

Ui(l),

where the absolute values of the expressions U(l) and Ui(l) does not exceed 4qm/2.
Since δ > 0 it follows that NA(k)> 0 if

δqm/2 > 4δW (k0)+4
r

∑
i=1

(W (k0pi)−W (k0))

(
1− 1
|pi|

)
.

The result follows, since W (k0pi)−W (k0) =W (k0) and ∑
r
i=1

(
1− 1

|pi|

)
= r−1+δ .
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Suppose A falls in the categories examined in subsections 4.2 and 4.3. With the
help of the analysis of those subsections and Eq. (10), we conclude that

NA(k)≥ δθ(k0)

κqm +λA +∑
l|k0
l 6=1

U(l)

+θ(k0)
r

∑
i=1

(
1− 1
|pi|

)
∑

l|k0pi
l-k0

Ui(l),

where κ ≥ 1/2, λA is−1 if A is anti-diagonal and 0 otherwise and the absolute values
of the expressions U(l) and Ui(l) does not exceed 2qm/2. The result follows as above.

Finally, suppose A is diagonal. We recall the facts proven in subsection 4.4.
Eq. (10) gives

NA(k)≥δθ
2(q1)θ(F1)

κqm + ∑
d1|q1,d2|q1,G|F1

not all =1

U(d1,d2,G)


+θ

2(q1)θ(F1)
r′

∑
i=1

(
1− 1
|pi|

)
∑

d1|qi,1,d2|qi,2 and G|Fi,1
d1-q1,d2-q2 or G-F1

Ui(d1,d2,G),

where p1, . . . ,pr′ are exactly those prime divisor quadruples, appearing in the (k0,r)-
decomposition of k, whose fourth entry is 1, (qi,1,qi,2,Fi,1,Fi,2) = k0pi, the absolute
values of the expressions U(d1,d2,G) and Ui(d1,d2,G) does not exceed qm/2 and
κ ≥ 1/2. The result follows as above. ut

Clearly, if m0 = q− 1, then F0 splits into linear factors. If m0 6= q− 1, then F0 =

∏d|m0
Qd , where Qd is the d-th cyclotomic polynomial. The d-th cyclotomic polyno-

mial splits into φ(d)/sd distinct monic irreducible polynomials of degree sd , where
sd is minimal such that d | qsd −1. For a detailed account of these well-known facts,
the reader is referred to [21, §2.4].

It follows that F0 splits into φ(m0)/s monic irreducible polynomials of degree
s := sm0 and some other polynomials of degree dividing s. We denote the product of
those with degree s by G0. The proposition below is more or less a restatement of
Proposition 5.3, where we have exploited the predictable factorization of F0, in order
to choose a suitable universal decomposition of w.

Proposition 5.4 Let {l1, . . . lt} be a set of distinct primes (this set may be /0, in which
case t = 0) dividing q0 and r0 := deg(F0/G0). If

qm/2 > 41−tW 2(q0)W 2(F0/G0)

(
qs(2(m0− r0)+ s(2t−1))

sqs (1−2∑
t
i=1 1/li)−2(m0− r0)

+2
)
,

then NA(w)> 0, provided that the denominator of the inequality is positive.

Proof Let G0 = ∏
r1
i=1 Gi be the factorization of G0 into monic irreducible polynomi-

als. Consider a (k0,2(r1 + t))-decomposition of w, where

k0 =

(
q0

∏
t
i=1 li

,
q0

∏
t
i=1 li

,
F0

G0
,

F0

G0

)
.
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Clearly, the prime divisor quadruples of this decomposition are exactly those who
have exactly one 6= 1 entry and this entry is either li, for some i = 1, . . . t, or Gi, for
some i = 1, . . . ,r1. Proposition 5.3 implies that NA(w)> 0, if

qm/2 > 41−tW 2(q0)W 2(F0/G0)

(
2(r1 + t)−1

1−2∑
t
i=1 1/li−2∑

r1
i=1 1/qs +2

)
,

that is

qm/2 > 41−tW 2(q0)W 2(F0/G0)

(
qs(2sr1 + s(2t−1))

sqs (1−2∑
t
i=1 1/li)−2sr1

+2
)
.

The desired result follows immediately, since sr1 = m0− r0. ut

6 Evaluations

From Proposition 5.4 it is clear that some knowledge regarding the factorization of
F0 can be used in order to effectively use the results of the previous section. In this
section we, at least to some point, describe the factorization of F0 and then prove our
result. For the proof of Proposition 6.1 sieving is unnecessary, but is essential for all
the rest.

Proposition 6.1 Let q and m be such that m0 ≤ 4. If q ≥ 23 and m ≥ 17, then
NA(w)> 0.

Proof From Proposition 4.3 and Lemma 4.2, since W (F0) ≤ 24, it suffices to show
that

qm/4 > 45c2
q0
, (11)

where cq0 < 4514.7. This inequality is satisfied for q≥ 23 and m≥ 31 and for q≥ 268
and m≥ 17. In the remaining region there are exactly nineteen pairs (q,m) satisfying
m0 ≤ 4, but only eight of them, namely (23,23), (25,20), (25,25), (27,18), (27,27),
(32,24), (49,21) and (81,18), do not satisfy Eq. (11) for cq0 < 4514.7. For those
pairs we compute W (q0) ≤ 215 and now a sufficient condition would be qm/2 > 420,
which is satisfied from all eight mentioned pairs. ut

In the two following propositions we deal with the case when F0 splits into linear
factors, which occurs when m0 | q−1.

Proposition 6.2 Let q and m be such that m0 = q−1. If q≥ 23, then NA(w)> 0.

Proof We have that w=(q0,q0,Fo,F0), where F0 =Xq−1−1=∏x∈F∗q(X−x). There-
fore, it is clear that, for 0 ≤ r ≤ 2(q− 1), we can choose a (k0,r)-decomposition of
w, where k0 = (q0,q0,G,G), where some G | F0 with 1 ≤ deg(G) ≤ q− 1. In that
case all the 2(q−1−deg(G)) primes of the decomposition have absolute value q.

For q odd choose G, such that deg(G) = (q− 1)/2. In that case δ = 1/q, ∆ =
(q−1)2 +1 and W (G) = 2(q−1)/2. It follows from Proposition 5.3 that NA(w)> 0, if

qm/2 > 2q+1((q−1)2 +1)W 2(q0). (12)



An extension of the (strong) primitive normal basis theorem 19

For q even choose G such that deg(G) = q/2. In that case δ = 2/q, ∆ = q(q−3)
2 +2,

W (G) = 2q/2 and Proposition 5.3 yields that if Eq. (12) holds, then NA(w)> 0, hence
if Eq. (12) holds, then NA(w)> 0 in any case. With the help of Lemma 4.2, Eq. (12)
may be replaced with

qm/4 > 2q+1((q−1)2 +1)c2
q0
. (13)

Eq. (13) is easily verified for q > 72, since m≥ q−1 and cq0 ≤ 4514.7. Similarly,
if m 6= q−1, then m≥ 2(q−1) and Eq. (13) is easily verified for q≥ 27.

The remaining cases are those when m = q−1 and 23≤ q≤ 71. For those values
we compute cq0 < 45.2 and now Eq. (13) holds for q> 55. For 23≤ q≤ 55, q a prime
power and m = q−1 we verify directly that Eq. (12) holds with the sole exception of
q = 25.

For q = 25, we compute

q0 = 2 ·3 ·13 ·17 ·31 ·313 ·601 ·11489 ·390001 ·152587500001

and set q1 = 2 ·3 ·13 ·17 ·31. We choose a (k0,34)-decomposition of w, where k0 =
(q1,q1,G,G), where G is defined as before. It follows that δ = 1

25 −
2

152587500001 −
2

390001 −
2

11489 −
2

601 −
2

313 and ∆ = 33/δ + 2. It can be computationally confirmed
that the conditions of Proposition 5.3 are satisfied, i.e. NA(w)> 0. ut

Proposition 6.3 Let m and q be such that m0 | q− 1 and m0 6= q− 1. If q ≥ 23 and
m≥ 17, then NA(w)> 0.

Proof We use Proposition 5.4, with /0 as the mentioned set of primes. It is clear that,
in that case G0 = F0 and s = 1. It is also clear that the denominator of the inequality
of Proposition 5.4 is positive, since m0 ≤ (q−1)/2. It follows that NA(w)> 0 if

qm/2 > 4W 2(q0)

(
q(2m0−1)

q−2m0
+2
)
. (14)

Assume m0 = (q− 1)/2. With the help of Lemma 4.2, Eq. (14) can be replaced
by qm/4 > 4c2

q0
((q− 1)2 + 1), where cq0 < 4514.7. This inequality is satisfied for

q ≥ 23 and m ≥ 32. Further, m ≥ m0 = (q− 1)/2, i.e. another sufficient condition
is q(q−1)/8 > 4c2

q0
((q−1)2 +1). This is satisfied for q≥ 54. For the remaining pairs

(q,m), q is an odd prime power 23≤ q < 54 and 17≤m < 32. Since m0 = (q−1)/2
and m0 |m it follows that 2m≡ 0 (mod q−1) and a computation shows that this con-
dition holds for nine pairs, but only six of them, namely (37,18), (41,20), (43,21),
(47,23), (49,24) and (53,26), satisfy m0 = (q−1)/2. For all six pairs Eq. (14) can
be verified directly.

Next, assume m0 = (q− 1)/3. As above, it turns out that NA(w) > 0, if qm/4 >

4c2
q0

2q2−3q+4
q+2 , where cq0 < 4514.7. This condition is satisfied for q≥ 23 and m≥ 28.

Furthermore, since m ≥ m0 = (q− 1)/3 another sufficient condition is q(q−1)/12 >

4c2
q0

2q2−3q+4
q+2 , which holds for q ≥ 67. For the remaining pairs (q,m), q is a prime

power 23 ≤ q < 67 and 17 ≤ m < 28. Since m0 = (q− 1)/3 and m0 | m it follows
that 3m≡ 0 (mod q−1) and a computation shows that this condition holds for seven
pairs, but only two of them, namely (61,20) and (64,21), satisfy m0 = (q−1)/3. For
both pairs, Eq. (14) can be verified directly.
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Finally, assume m0≤ (q−1)/4. If tq0 ≤ 17, it follows that W 2(q0)≤ (217)2, hence

Eq. (14) implies that NA(w) > 0, if qm/2 > 418 · q2−q+2
q+1 , which holds for q ≥ 23 and

m ≥ 17, except when m = 17 and 23 ≤ q < 28, but in those cases m0 - q− 1. For
tq0 > 17 we use Proposition 5.4 with {l1, l2, l3} as our set of primes, where l1 ≥ 53,
l2 ≥ 59 and l3 ≥ 61, primes dividing q0. As before, Proposition 5.4 and Lemma 4.2
imply that NA(w) is positive, granted that

42qm/4 > c2
q0

q2− (4α +7)q+2
(2α−1)q+1

, (15)

where α := 1− 2/li − 2/l2 − 2/l3. Since α ≥ 1− 2/53− 2/59− 2/61 and cq0 <
4514.7, Eq. (15) holds for q ≥ 23 and m ≥ 22 and for q ≥ 78 and m ≥ 17. For the
remaining pairs , i.e. 17 ≤ m < 21 and prime powers 29 ≤ q < 78 we have that
cq0 < 28.5 and Eq. (15) holds for q≥ 23 and m≥ 9. ut

In the rest of this section we focus on the remaining cases, i.e. when m0 > 4 and s 6= 1.
Following Cohen and Huczynska [8,9] we define ρ := tF0/G0/m0, where tF0/G0 stands
for the number of monic irreducible factors of F0/G0. The lemma below, proven in
[8], provides an estimation of ρ .

Lemma 6.4 Assume m0 > 4 and q > 4.

1. If m0 = 2gcd(m,q−1) with q odd, then s = 2 and ρ = 1/2.
2. If m0 = 4gcd(m,q−1) with q≡ 1 (mod 4), then s = 4 and ρ = 3/8.
3. If m0 = 6gcd(m,q−1) with q≡ 1 (mod 6), then s = 6 and ρ = 13/36.
4. Otherwise ρ ≤ 1/3.

Clearly, the demand m0 > 4 is not a restriction at all, since in Proposition 6.1 the
cases where m0 ≤ 4 have already been settled. Furthermore, Proposition 5.4 implies
that NA(w)> 0, if

qm/2 > 4ρm0+1W 2(q0)

 2(1−ρ)m0
s −1

1− 2(1−ρ)m0
sqs

+2

 , (16)

since tF0/G0 ≤ r0 and ρm0 = tF0/G0 , for m0 <
sqs

2(1−ρ) .

Proposition 6.5 If q≥ 27, m≥ 17, m0 > 4 and ρ = 1/2, then NA(w)> 0.

Proof Under the given restrictions, Lemma 6.4 implies s = 2, q is even and m ≡ 0
(mod 4), i.e. it suffices to only examine m≥ 20. Furthermore, m0 ≤ 2(q−1)< 2q2,
that is we can use Eq. (16) as a sufficient condition for NA(w) > 0. It follows from
Lemma 4.2 that if (

4
√

q
2

)m

> 4c2
q0

 q−2

1− q−1
q2

+2

 ,

then NA(w) > 0, since the substitution of m0 with 2(q−1) ensures that the denomi-
nator of the above fraction remains positive. This inequality holds for cq0 < 4514.7,
q≥ 23 and m≥ 236.
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For m < 236 the denominator of the fraction of Eq. (16) remains positive for
q≥ 23, even if we substitute m0 with m. It follows that a sufficient condition is(

4
√

q
2

)m

> 4c2
q0

(
q2(m−2)
2q2−m

+2
)
. (17)

This inequality holds for cq0 < 4514.7, q ≥ 988 and 20 ≤ m < 236. For each re-
maining pair (q,m), where 23 ≤ q < 988 is an odd prime power and 20 ≤ m <
236, with m ≡ 0 (mod 4), we compute cq0 explicitly and exclude those pairs who
do not satisfy Eq. (17). In what remains, a computation reveals that the only pairs
(q,m), satisfying the implied restrictions of Lemma 6.4, i.e. m0 = 2gcd(m,q−1), are
(23,92), (25,80) and (27,36). For the those three pairs m0 ≤ 16 and cq0 < 15.7. It
follows, from Eq. (16), that a sufficient condition for those pairs would be qm/4 >

4915.72
(

7q2

q2−8 +2
)

, which is satisfied by all three of them. ut

Proposition 6.6 If q≥ 27, m≥ 17, m0 > 4 and ρ = 3/8, then NA(w)> 0.

Proof Since ρ = 3/8, Lemma 6.4 implies q ≡ 1 (mod 4), 16 | m and s = 4, i.e. it
is safe to show the desired result for q ≥ 25 and m ≥ 32. Furthermore, m0 ≤ 4(q−
1) < sqs/2(1− ρ), which means we can use Eq. (16) as a sufficient condition for
NA(w)> 0. It follows from Lemma 4.2 that if

(q/8)m/4 > 4c2
q0

(
5q−9

4−5(q−1)/q4 +2
)
,

then NA(w) > 0, since the substitution of m0 with 4(q−1) ensures that the denomi-
nator of the above fraction remains positive. This inequality holds for cq0 < 4514.7,
q≥ 25 and m≥ 77.

For m < 77 the denominator appearing in Eq. (16) remains positive, even if we
substitute m0 with m. It follows that NA(w)> 0 if

(q/8)m/4 > 4c2
q0

(
q4(5m−16)
16q4−5m

+2
)
.

This condition is satisfied for q ≥ 106, 32 ≤ m < 77 and cq0 < 4514.7. For each
remaining pair (q,m), i.e. where 25 ≤ q < 106, a prime power with q ≡ 1 (mod 4)
and 32 ≤ m < 77, with 16 | m, we compute cq0 explicitly and check that the above
condition holds in any case. ut

Proposition 6.7 If q≥ 23, m≥ 17, m0 > 4 and ρ = 13/36, then NA(w)> 0.

Proof Since ρ = 13/36, Lemma 6.4 implies q ≡ 1 (mod 6), 36 | m and s = 6, that
is we can only show the desired result for q ≥ 25 and m ≥ 36. Furthermore, m0 ≤
6(q−1) < sqs/2(1−ρ), which means we can use Eq. (16) as a sufficient condition
for NA(w)> 0. It follows, from Lemma 4.2. that if

(q/413/9)m/4 > 4c2
q0

(
46q−82

36−46(q−1)/q6 +2
)
,
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then NA(w) > 0, since the substitution of m0 with 6(q−1) ensures that the denomi-
nator of the above fraction remains positive. This inequality holds for cq0 < 4514.7,
q≥ 25 and m≥ 72, therefore from now on we can focus on the case m= 36. It follows
that NA(w)> 0 if

(q/413/9)m/4 > 4c2
q0

(
q6(23m−108)
108q6−23m

+2
)
. (18)

This condition is satisfied for q ≥ 72, m = 36 and cq0 < 4514.7. For the remaining
pairs, i.e. 25≤ q < 72, a prime power with q≡ 1 (mod 6), and m = 36, we compute
cq0 < 20.1. For this bound of cq0 , Eq. (18) is satisfied by all the possible exceptions
described previously, with the sole exception of (25,36), which fails to satisfy m0 =
6gcd(m,q−1). ut

Proposition 6.8 Suppose q ≥ 23, m ≥ 17, m0 > 4, m0 - q− 1 and ρ ≤ 1/3. Then
NA(w)> 0.

Proof We begin with q ≥ 27. From the definition of ρ , it is clear that W (F0) ≤
2(1+(s−1)ρ)m0/s. Since s ≥ 2 and ρ ≤ 1/3, it follows that W (F0) ≤ 22m0/3. It follows
from Proposition 4.3 and Lemma 4.2 that NA(w) > 0, if (q/16)m/3 > 4d2

c0
, where

dc0 < 1.06 ·1024. This inequality is satisfied for q≥ 27 and m > 642.
For m ≤ 642 we have that m0 ≤ m < 729 ≤ sqs

2(1−ρ) , since ρ ≤ 1/3, q ≥ 27 and
s≥ 2, i.e. we can use Eq. (16) for the remaining cases. This means that if

( 4
√

q/ 3√4)m > 4c2
q0

(
q2(2m−3)
3q2−2m

+2
)
, (19)

from Lemma 4.2, then NA(w)> 0. This condition is satisfied for q≥ 27 and 61≤m<
642 and for q≥ 834 and 17≤m < 642, provided that cq0 < 4514.7. In the remaining
region, we compute cq0 , for each pair (q,m), and it follows that Eq. (19) is satisfied
for all but 26 pairs. Moreover, Eq. (16) implies that if

(
√

q/ 3√4)m > 4W 2(q0)

(
q2(2m−3)
3q2−2m

+2
)
, (20)

then NA(w) > 0. We explicitly compute W (q0) for all 26 remaining pairs and check
that all satisfy the latter inequality.

Next we focus on the case when q = 23 or 25. In that case, since 23 or 5 does not
divide q0, it follows that cq0 < 3340.6. Assume s = 2. In that case m0 | q2− 1, that
is m0 ≤ 624, i.e. W (F0) ≤ 22·624/3. It follows from Proposition 4.3 and Lemma 4.2
that NA(w)> 0 if qm/4 > 41+ 2·624

3 c2
q0

. This condition is satisfied for q = 23, m≥ 759
and cq0 < 3340.6 and for q = 25, m ≥ 739 and cq0 < 2760.4. We also verify that
NA(w) > 0 the remaining pairs (q,m), where q ∈ {23,25} and m ≥ 530, since all
those pairs satisfy qm/4 > 4W (F0)

2c2
q0

, where W (F0) and cq0 is computed explicitely
for each pair.

For m ≤ 529, we have that m0 ≤ m ≤ 529 < sqs

2(1−ρ) , which means we can use
Eq. (16) for the remaining cases, i.e. if Eq. (19) is satisfied, then NA(w) > 0. This
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condition is satisfied for q≥ 23, 67≤ m≤ 529 and cq0 < 3340.6. For the remaining
cases, namely q ∈ {23,25} and 17 ≤ m < 67, we compute cq0 for each pair and
check that Eq. (19) is satisfied for all but 16 pairs (q,m). We explicitly check all the
remaining pairs and find that only (23,24) satisfies s = 2. For that pair W (q0) = 22

and it satisfies Eq. (20).
Finally, assume q = 23 or 25 and s ≥ 3. It follows from Proposition 4.3 and

Lemma 4.2 that, for our purposes, a sufficient condition would be qm/4 > 41+ 5m
9 c2

q0
.

This condition holds for q≥ 23, m≥ 1285 and cq0 < 3340.6. For the remaining cases
we can use Eq. (16) as a sufficient condition, since m0 ≤ m < 18250.5 ≤ sqs

2(1−ρ) . It
follows that NA(w)> 0, if

qm/4 > 4
m
3 +1c2

q0

(
q3(4m−9)
9q3−4m

+2
)
, (21)

which holds for q≥ 23, 66≤m < 1285 and cq0 < 3340.6. From the remaining pairs,
i.e. (q,m) where q∈ {23,25} and 17≤m< 66, we exclude those who satisfy Eq. (21)
(where cq0 is explicitly computed for each pair) and those for who s≤ 2 or m0≤ 4. We
are now left with only 12 possible exception pairs, namely (23,17), (23,18), (23,20),
(23,21), (23,28), (23,30), (23,36), (25,17), (25,18), (25,21), (25,22) and (25,30).
Moreover, a computation reveals that all 12 remaining pairs satisfy

qm/2 > 4W 2(q0)

(
q3(4m−9)
9q3−4m

+2
)
,

which is a sufficient condition for our purposes. In that computation, W (q0) is com-
puted explicitly for each pair (q,m). ut

Summing up, in this section we proved the following.

Theorem 6.9 Let q ≥ 23 be a prime power, m ≥ 17 an integer and A =
(

a b
c d

)
∈

GL2(Fq), such that if A has exactly two non-zero entries and q is odd, then the quo-
tient of these entries is a square in Fqm (thus A may have two, three or four non-zero
entries). There exists some x ∈ Fqm such that both x and (−dx+ b)/(cx− a) are si-
multaneously primitive and free over Fq.

Example 6.10 As a demonstration of the above, assume q = 29, m = 18 and A =(
1 4
0 7

)
. In that case, our aim is to find some x ∈ F2918 , such that both x and 7x−4 are

simultaneously primitive and free over F29. It is clear that F2918 = Z29(α), where α

is a root of 10+X +15X2 +27X3 +15X5 +25X6 +23X7 +18X8 +10X9 +5X10 +
17X11 + 24X12 + 28X13 + 16X14 + 24X15 + 18X16 + 24X17 +X18. It is not hard to
check that the set of elements satisfying these conditions include 12+α +α2, 27+
3α +α2, 5+5α +α2, 18+5α +α2 and 26+5α +α2 among others.

7 Conclusion

In this paper, an extension to Theorems 1.1 and 1.2 was considered, Problem 1.3.
This was partially solved by Theorem 6.9. We also note that pursuing the problem to
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a complete solution, i.e. identify exactly for which q, m and A, Problem 1.3 cannot be
answered positively, although probably possible, would lead to an exhausting case-
by-case approach and require heavy computer usage. In this work, we proved that
Problem 1.3 can be answered positively for most A, when q and m are large enough
and identified some infinite families of genuine exceptions, see Remarks 4.11, 4.14
and 4.16. We also left an infinite number of cases unresolved. In particular, we did
not solve Problem 1.3 for q≤ 19 or m≤ 16, with the exception of the cases described
in Remarks 4.11, 4.14 and 4.16.

Moreover, an interesting observation, thanks to Prof. Stephen D. Cohen, is that if
the condition of (−dx+ b)/(cx− a) to be primitive was missing from Problem 1.3,
then one would end up with an easier problem, which would still qualify as an ex-
tension of Theorems 1.1 and 1.2. The complete solution to the resulting problem was
performed in [19].
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